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J .  Phys. A: Math. Gen. 21 (1988) 17-31. Printed in the U K  

Equations admitting O(2,l)O R( t ,  t - ' )  as a prolongation 
algebra 

C Hoenselaers 
Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Strasse 1, D-8046 Garching bei 
Miinchen, Federal Republic of Germany 

Received 3 December 1986, in final form 10 July 1987 

Abstract. We derive several equations possessing O(2, l )@R(t ,  l - ' )  as a prolongation 
algebra. An example of a Backlund transformation is given. 

1. Introduction 

In a sequel to earlier papers [ 1-31 where we found the inifinite-dimensional prolonga- 
tion algebra for some specific non-linear differential equations we shall here continue 
our studies of prolongation structures by going in the opposite direction. There the 
question was: given a non-linear differential equation, does it admit an infinite- 
dimensional algebra and how can that be found? Here now we turn the question 
around and ask: given an infinite-dimensional Lie algebra, is it the prolongation algebra 
of some non-linear differential equation and how can that be found? 

As can be inferred from [2] there are many equations to be derived from a particular 
algebra and in this paper we shall take O(2, l ) @ R ( t ,  2 - ' )  as an example. In [2] this 
algebra was shown to be the prolongation algebra to the Korteweg-de Vries and 
non-linear Schrodinger equations. In § 3 we shall demonstrate that many more 
equations, some of them well known, some of them to our knowledge new, can be 
derived from it. 

In [ 1,2] we have also found other prolongation algebras and it is not obvious how 
they are connected with that of the present paper. In § 2 we shall therefore show that 
the algebras found there are isomorphic to subalgebras of 0 ( 3 ) @ R ( t ,  f-') or to 
O(2, l ) @ ~ ( t ,  r - ' )  itself. 

Prolongation algebras are useful for finding Backlund transformations; a particular 
instance will be discussed in $4 .  Furthermore they are useful for finding relations 
between apparently different equations such as the Miura transformation (not to be 
discussed here; examples have been given in [2]) or transformations like that connecting 
the Harry-Dym equation with the modified Korteweg-de Vries equation. The examples 
to be discussed in 5 3 are chosen to show the various possibilities within the prolongation 
structure approach. 

Neither in § 3 nor in § 4 shall we display all the details of the calculations. For 
some examples we describe the essential considerations from which the reader can fill 
in the missing steps; in other instances we shall just state the results. 

Other methods have been used to derive non-linear equations from infinite- 
dimensional algebras [4,5]. In particular Ablowitz et a1 [6,7] have used the loop 
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18 C Hoenselaers 

algebra A:” of which our algebra is a real form. A comparison between their approach 
and ours will be given in § 5. 

Before we go into details, let us outline the general formalism. All our considerations 
will be purely local and we will deal only with equations in two dimensions. Consider 
a set of non-linear first-order differential equations for n functions, u(x, t ) .  Any 
higher-order equation can be written as such a set. Now introduce 2-forms F on an 
( n  + 2)-dimensional manifold with coordinates (U, x, t )  such that restriction to the 
submanifold labelled by x, t reproduces the original equations. Or, phrased 
equivalently, let 4 :  (x, ?)+(U, x, t ) .  Then the F are to be chosen such that 

(1.1) 4* F = 0 = given differential equation. 

In general the differential equations will have to satisfy integrability conditions. In 
the language of our forms F those conditions are 

d F = O m o d  F. (1.2) 

A set of such forms is called a closed ideal. 
Now we enlarge the dimension of the manifold on which our forms live to an as 

yet unspecified number by introducing pseudopotentials or prolongation variables. To 
this end consider the 1-forms 

(1.3) 

with an unspecified number of y. Let now 4 be a map 4 : (x, t )  + (y, U, x, t ) ;  the w are 
to be chosen such that 

w = -dy + A (  U, y ,  x, t )  dx + B (  U, y,  x, t )  d t  

+*F=O 

4*u = O  (1.4) 

give integrable differential equations. The condition for this is 

d w  = 0 mod(F, w ) .  

Inserting w into this equation we obtain terms 
(1.5) 

A,  dy d t  + By dy dx  = (B,A - A $ )  dx d t  mod w .  

(We omit the wedge which normally appears between differential forms.) Other terms 
are of the form A ,  du d x  and some of them can be converted to A , f (  U )  dx d t  mod F. 
Finally we are left with equations of the type (a  subscript denotes differentiation with 
respect to the indicated variable) 

where the square bracket denotes the usual vector commutators A;P B P  - B P P A ~  with 
respect to the prolongation variables. Suppose that the (U, x, t )  dependence’ of A and 
B can be determined from the above equations and that they can be written as (for 
some natural number n and m )  

(1.7) 
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Inserting (1.7) into (1.6) yields some, but in general not all, commutators between the 
X,. As the Jacobi identities have to be satisfied one can use them to determine some, 
possibly all, of the unknown commutators. It may even turn out that some of the X, 
have to vanish. One then introduces new generators equal to the still unknown 
commutators and repeats the process of going through the Jacobi identities. If this 
process appears to be open-ended, one can try to deduce the structure of the emerging 
infinite-dimensional algebra. For practical purposes an infinite-dimensional algebra 
is not manageable; one can then look for homomorphisms into a finite-dimensional one. 

A Backlund transformation-more precisely an auto-Backlund transformation, i.e. 
one which maps solutions of an equation into solutions of the same equation-is in 
the present context a map 4 : (U, y, x, t )  + (C, x, t )  such that 

4*F = 0 mod( F, w ) .  (1.8) 

Let us now play the game the other way. We start with an infinite-dimensional Lie 
algebra 

[xt,xkl=c~kx, 
of vector fields on an infinite-dimensional manifold with coordinates y. Then introduce 
a basis of 1-forms dual to the basis vector fields X, and define 

w = -dy + X,('. 

The 2-forms 

dw mod w = X,(dS' - iCi ,5k5')  
define the Cartan-Maurer structure forms 

F = d5' - ~ C ~ , ~ k [ '  (1.9) 

of the algebra. How can we obtain differential equations out of this system? To this 
end, set all but a finite number of the 5 to zero, i.e. 6' = 0, i E N (a finite set of integers). 
This splits the set (1.9) naturally into two sets, the R, C system [4]: 

R = d [ '  -fC;,gk5' i E  N (1.10a) 

z = c;,gk.g i E  N. (1.10b) 

The fact that the structure constants satisfy the Jacobi identities guarantees that 

dR = 0 mod(R, Z) dZ = 0 mod(R, E). 

R,  are thus a closed ideal and the equations 

R = O  ( 1 . l l a )  

Z=O (1.1 1 b) 

are integrable. The dimension of the integral manifold of the R, system is Cartan's 
genus g and is the number of independent 1-forms admitted by C = 0. We can thus 
write the 5' as linear combinations of those independent 1-forms. 

For instance, let one of the equations (1.1 16) be 5 ' t 2  = 0, then we solve it by writing 
5' = a[* .  If in addition another of the equations (1.1 1 b )  is 

5'53 - 5254 = o*& - 5 4 )  = 0 
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then it can be solved by t4 = at3 + bt'. In general, the solution of (1.1 1 b )  can be written 
as 

5' = A ; T ~  i E N ;  l s k s g  (1.12) 

where q k  are the independent 1-forms and A; are functions of the coordinates of the 
integral manifold. 

How can we find the coordinates? To this end, we substitute (1.12) into the R 
equations (1 . l la )  and look for exact 1-forms. For example, it may turn out that one 
such equation is d q '  = 0 and hence we set q' = dx'. 

Suppose that we have found g independent exact 1-forms. Taking them as coordin- 
ate differentials, we evaluate (1 . l l a )  and thus obtain a set of non-linear first-order 
differential equations which can then be combined to higher-order equations. 

On the other hand, there could be more than g exact 1-forms, with, of course, only 
g of them independent. It is now our choice which subset of them to take as coordinates 
and thereby derive various equations from the same R, Z system. Those equations are 
related by an interchange of coordinates (those 1-forms which we took to be the 
independent ones) and potentials (the other ones). 

The 0, Z system could be such that we can only find less than g exact 1-forms. In 
this case we reduce the genus by the following method [4]. Take a linear combination 
with constant coefficients 5 = c i f  such that 

5 d5 = 0 mod(& 2). (1.13) 

The equation 5 = 0 gives one 6 in terms of the others; the genus and the number of R 
equations is reduced by one. This is equivalent to a change of base in the original 
algebra and to putting one more 5 to zero. 

This reduction can, of course, also be effected if we have g exact 1-forms but want 
to lower the genus nevertheless. In this case we turn an independent 1-form (a 
coordinate) into a dependent one (a potential). The resulting equations will be quite 
different. The Miura transformation between the Korteweg-de Vries and the modified 
Korteweg-de Vries equations results from just such a reduction. Those possibilities 
will be exemplified in § 3. 

Is the choice of N (i.e. which forms to keep and which to set to zero) restricted 
in any way? There is to our knowledge no a priori criterion; the choice is arbitrary 
and can only be justified a posteriori. 

Another question is whether it is possible to reconstruct the infinite algebra from 
the 0, Z system. This system translates back into an incomplete Lie algebra with 
generators which are dual to those 5 which were kept non-zero. Treating this incomplete 
algebra in the usual manner which has been mentioned above finally gives that 
subalgebra generated by the basic generators. This algebra may be identical with or 
isomorphic to the whole algebra. 

Closely related is a question concerning the uniqueness of the R, Z system or, 
equivalently, whether the same equation can be derived from different systems. There 
is no obvious answer; the only thing which can be said is that if two sets of 5 are dual 
to generators belonging to certain subalgebras, if those subalgebras are isomorphic 
and if the basic generators are mapped into each other under the isomorphism, then 
the two R, Z systems yield the same equation. 

As a final remark, observe that dw = 0 mod(R, Z, w ) .  Thus 

W = O  (1.14) 
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gives the prolongation variables which we can then use to find Backlund transforma- 
tions. 

2. A remark on the algebras 

In [ I ,  21 we have encountered prolongation algebras which generically look like 

[ A A 1  = C t + k + c  [&CK 1 = At+k+a [CzAk] = B t + k + h  (2.1) 

where the A, B and C commute among themselves and a, b and c are given integers. 
Now consider the transformation 

A, = A, - [ (b+ ~ ) / 2 ]  = C, - [ ( U  + b ) / 2 ] .  

There are two cases to distinguish. Either a, b and c are all even/odd or two of them 
are even/odd and the 2ther one odd/even. In  the first case we obtain an algebra like 
(2.1) with the new 2, b, ĉ  all vanishing. The second case gives an algebra with one 
non-vanishing shift index equal to 1 and we take without loss of generality 

6, = B, - [ ( U  + ~ ) / 2 ]  

[ A t i k ]  = e i + k  [ f i i e k l  = At+,+, [ e , A k ] =  & i l + k .  (2.2) 

Here we have introduced the relative sign E = * 1  because that becomes important for 
the next argument. 

The algebra 0 ( 3 ) 0 R ( t ,  t - ' ) ,  respectively O(2, l)@R(t,  t-'), is given by 

[X,YkI = Zl+k [ yzk 1 = xt+ k [ztxkl= E Y + k  (2.3) 
for E = *1 where again the X ,  Y and Z commute among themselves. Both are real 
forms of the loop algebra of sI(2, C)  or A:". The relations 

A A, = x*, B! = Y&+I e, = z*,+, (2.4) 

A, = X ,  

6, = tc y ,  + z, + Y,+ 1 - ZI+ 1 )  

e, = t (  Y, + 2, - y, , ,  + Z,,,) 

show that (2.2) is a subalgebra of (2.3) irrespective of E.  

On the other hand, for E = -1 the relations 

(2.5) 

give an isomorphic map between (2.2) and (2.3). 

of (2.3) generated by even X and odd Y and Z or isomorphic to (2.3) itself. 

3 n-dimensional ones. They are generated by the recursion relations 

We have thus shown that any algebra (2.2) is either isomorphic to the subalgebra 

There are homomorphic maps from the infinite-dimensional algebra (2.3) into 

" - 1  .. . 
G i + n  = a k G i + k  

k = O  

where G stands for X ,  Y or Z.  We pick any n consecutive G and determine those 
above and below them by (2.6). For later use we give explicitly the cases 

n = 2  G ,+ ,=2pG,+I+  vG,. (2.8) 
If pz+ v = A'> 0 the resulting six-dimensional algebra is O(2, 1 )@0(2 ,  1). 
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3. Equations derivable from O(2, l)@R(t, C')  

We take the algebra under consideration as 

[xtyk]= x + k  [Xrzkl=  -Zt+k x z k l  = X # + k  

and denote the forms dual to the generators by 

5' dual to X - ,  

t4 dual to X o  

t2 dual to Y- ,  

t5 dual to Yo 

t3 dual to Z1 

t6 dual to 2, 

e7 dual to X1 5' dual to Yl t9 dual to Z1 ( 3 . 1 )  

5" dual to X 2  

5" dual to X 3 .  

tl' dual to Y2 dual to Z2 

All forms dual to the other generators are supposed to vanish. As mentioned above, 
this choice is arbitrary and motivated only by the fact that it contains all the systems 
which we should like to discuss below. 

The SZ ,  Z system (1 .1  1 a )  then becomes 

d t l  = t2t6 - t3e5 d t 2  = f1t5 - t25' d t 3 =  -5'16+ 135' 
d t 4  = t2t9 - t35'+ t5t6 d t 5  = 5 ' t 8 -  5'5'+ 5'5' de6 = -6'5' + t35' - 5'5' 
d t 7  = t2512 - 5 3 5 1 1  + 5 5 5 9  - 5 6 5 8  d t 8  = 5'5" - ,$25'O + 5'58 - 555' ( 3 . 2 ~ )  
d t 9  = -t1512 + 53510 - 5"5'+ 5"' 
d5" = -52513 + 5'5" - e55lo+ 5'5' 
d513 = t8512 - t95" 

= 5 5 5 1 2  - ,$6511+ 5 8 5 9  

= 5 3 5 1 3  - 5 '512+  56,$10- 5 7 5 9  

(3 .26)  

In what follows we shall not use the full set of equations (3 .2)  but rather restrict 
ourselves to certain subsets of them; we shall indicate the non-vanishing 5 without 
spelling out the corresponding S Z ,  Z system again. The examples are chosen such that 
they demonstrate various possibilities within the present formalism. For instance, the 
following cases (A)-(D) have been dealt with in [ l ,  21. 

(A) 5'- g o #  0 

gives the real version of the non-linear Schrodinger equation 

a, = a,, - a 2 b  b, = -bx, + ab2. 

(B) t4- t9 = t9 z 0 

gives the Korteweg-de Vries equation in the form 

U, = U,,, +;U:. 
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Furthermore, considering the remarks in the previous section, it follows from [2] that 

(C)  t6 - t9 5" # 0 

gives the modified Korteweg-de Vries equation with a different sign of the non-linear 
term 

1 3  U, = U,,, -ill,. 

Similarly it can be concluded from [ l ]  that 

(D)  t3 - t6 t 8 # 0  5' = 5 5  

yields the sinh-Gordon equation 

dx, = em -e-*. 

Note that the non-linear Schrodinger equation was obtained by retaining the forms 
dual to Go, GI ,  X 2 .  Which equation do  we obtain if we keep the forms dual to Go, 
GI,  G 2 ,  X 3 ?  The resulting system has genus four and the easiest way to reduce the 
genus is by setting 5"=0. Hence we have 

(E) 5"- t9 5" - 5 ' 3  # 0. 

It follows immediately from (3.26) that t8, t9, (I1, [ I 2  and 513 have to be proportional 
and furthermore that t5  and t6 are linear combinations of 5' and [I3. The solution of 
(3.2b) is given by 

k 5  = at' + g5I3 

5 9  = f 5 ' 3  5" = , < I 3  5" = & I 3 .  

t6 = b5' + h5" = e513 

The remaining independent forms are 5", 5' and < I 3 .  By inserting the above expressions 
into ( 3 . 2 ~ )  it follows that 

d g 3 = 0 + g 3 = d t .  

Now one eliminates the 545'3 terms between d5" and d5I2 and uses the result to show 
that 

d(  5'+ ab5I3) = 0 5' = dx - ab dt. 

Similarly, by eliminating the various terms on the right-hand side of the d5" equation 
one shows that 

d[5"+(uf+ be).fI3] = 0. 

Hence all forms can be written as 

["=dz-(uf+ be) dt  t8  = e d t  

t 5 = a  d x + ( g - a ' b )  dt  t9= f dt  

t6 = b dx + ( h  - ab2) dt  5" = a dt  

[ ' = d x - a b d t  5" = b d t  

= dt. 

(3.3) 
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Using x, z, t as coordinates (i.e. taking a(x,  z, t) ,  etc) we get from ( 3 . 2 ~ )  by collecting 
terms in dx dt, etc, the following equations: 

a: = a bZ = -b e = a, f = -b, e, = e 

f: = -f g = ex h = - f ,  gz = g h,=-h 

-a, + g, - ( a 2 b ) ,  = a ( a f  + eb) 

Putting everything together yields 

-b, + h, -(ab2),  = -b(af+eb).  

U ,  = U,,, - 3ab0, b, b,,, - 3abbx. (3.4) 

The z dependence just reflects the fact that (3.4) is invariant under a scaling of a by 
a constant and of b by its inverse. 

From the point of view of the remaining 1-forms the system (3.4) is a generalisation 
of the non-linear Schrodinger equation. Looking at the equations, however, they rather 
appear to describe a non-linear interaction of waves combining aspects of the Korteweg- 
de Vries and the modified Korteweg-de Vries equations. a = i b  gives the modified 
Korteweg-de Vries equation, while b =constant leaves us with the Korteweg-de Vries 
equation [6, 131. 

To illustrate another point, let us consider the system obtained by keeping 

(F) 

After solving (3.26) and finding exact 1-forms to be used as coordinate differentials 
we obtain 

t4, ts, t7 - ty 6 ' 2  = (8 # 0. 

t4 = dy = U dx + ( c - f a ' )  dt 

t5  = dx -f( b + $ U ' )  dt  

t7= U dt 

t8=  dt  

t Y = d x + f ( b - & a ' )  dt. 

We have three exact 1-forms, dy, dx and dt, two of which are independent. It is now 
our choice which two to use as coordinates; the third one becomes a potential. Using 
x and t, as suggested by the way the 5 are written above, gives the modified Korteweg-de 
Vries equation 

(3.5) 
3 2  

U ,  = f ( a x x x - 2 a  U,). 

This is not be confused with case (C). The equation obtained there is the one for 
U = a dx. 

If we choose y instead of x as coordinate we have 

t4 = dy t5  = ( l / ~ )  dy - ( C / U  + i b )  d t  5 ' = a d t  

6 8  = d t  6' = (1/  a )  dy - ( c / a  - i b )  dt. 

The differential system then yields 

a , . = ( l / a ) b  

( l / a ) a ,  - ( c / u ) , .  -fb,. = - C / U  - $b 

( l / a2 )a ,  - ( C/ a),v ++by = C / U  - fb. 
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It is now advantageous to introduce U = da which gives 

( 3 . 6 )  

This transformation interchanging a coordinate, x, with a potential, y ,  is analogous to 
the one connecting the modified Korteweg-de Vries equation of case (C) with the 
Harry-Dym equation [9] or the one mentioned in [ 2 ] .  Transformations of this type 
are rather difficult to find if one works with the equations directly [ l o ] .  On the other 
hand, they are almost obvious from the differential system. 

I 3 1 2  
U, = iU (U,,,, - U, 1. 

To demonstrate another possibility within the present formalism we take. 

for which the 5 can be calculated as above and are given by 

t4 = dz' 5 ' = a d x + ( e - a 2 b ) d t  5' = dx - ab d t  

t 8 = a d t  t9 = b d x + (  f - a b 2 )  dt  5'" d t  .$I2 = b dt. 

Moreover it can be shown that 

d[ab[ '+(af  + b e - i ~ ~ b ~ ) ( ' ~ ]  = O  

or 

dw = a b  d x + ( a f + b e - $ a ' b 2 )  dt. 

Rather than using w to replace x as coordinate, as has been done above, we take 
z = z'- a w  with constant a as coordinate. This gives 

5" = dz + aab dx + a ( a f  + be - i a 2 b 2 ) .  

The equations to be derived from ( 3 . 2 ~ )  are 

e = a, - a a 2 b  aZ = a eZ = e 

f = - b , - a a b 2  b , = - b  f z  = -f 
a, = e , - 2 a b a x - a 2 b x + a a 2 f  -4aa3b2 

b, = f, -2abb, - b'a, - a b 2 e + ~ a a 2 b 3 .  

Finally they are 

a, = a , , - 2 a b ( a + l ) a , - ( 2 a + l ) a 2 b , - a ( a + ~ ) a 3 b 2  

b, = -bYy - 2 a b ( a  + l ) b ,  - (2a  + l ) b 2 a , + a ( a + i ) a 2 b 3 .  

There are three more or less obvious choices for the parameter a, namely 

a, = (a, - a 2 b ) ,  a = o  { 
b, = -( b, + ab'), 

a, = a,, - aba, 
b, = -b.x, - abb, 

=-I 

' 1 3 2  a, = a , , + a - b , - ~ a  b 
b, = -b,,,+ b'a,+fa2b3 

a = - 1  

(3 .7)  

( 3 . 8 ~ )  

(3 .86)  

( 3 . 8 ~ )  
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The last equation is known as the derivative non-linear Schrodinger equation and can 
be solved by an inverse scattering transformation [ 111. Note that two sets of (3 .7)  with 
different a are connected by a transformation of the type 

= a econs lan txn  6 = b e - C O l l S t d n l X  H 

A similar transformation is also possible for the non-linear Schrodinger equation. 
As an  example of a system for which reduction is essential we mention 

(HI  5' - t6 # 0. 
The genus of this system is three. We can, however, find only two exact 1-forms. 5' 
is independent of the other forms and the right-hand side of d5' is independent of the 
other right-hand sides in ( 3 . 2 ~ ) .  Hence we reduce the system by setting 

The coefficient of 5' has been scaled to unity. The condition 

5=a53+54+ y&5+8.$6+&58. 

d l  = 0 m o d ( Q  X) 
gives 

2 y 8  = 2CY& = -1. 

If we now put 4' = 0 and  find coordinates for the other forms we obtain 

5' = em d x  t6 = e* d t  5 5 =  e x  - 4  d &'=e-* d t  

t 4 = ( 1 / d 2 ) [ ( 1 e m - k  e- ')dx+(e*/k-e- '  / U  d t l .  
The equations implied by ( 3 . 2 ~ )  are 

4, = -( l /d2) (e* /  k -e-' / 1 )  
4, = -( 1/d2)[1 em - k e-']. 

This can be recognised as the standard form a Backlund transformation-not in the 
sense of § 1-between two sinh-Gordon equations because it follows that 

(4  + $),, = ( l / k )  e&+'- ( k / l )  e-'m+') 
(4  - $),, =e'-' -e-'d-'J 

Without going into the details we just note that the following equations can be 
derived. 

(1) 5' - # 0 

( J )  [ I ,  tS - # 0 

( K )  

(L) 

arr = aba, b,, = -abb,. 

a,, = a + aba, b,, = b - abb,. 
5 3  - p,.$ = 6 5  # 0 

aa , , , -a , (a , ,+2)=  a3a,. 

5', p, t7, c9 = .go # 0 
a, + ay, - 2aa, = 0 

or, interchanging potential and  coordinate, 
a, = a 2 ( a z ,  - a : ) .  

This list is, of course, by no means exhaustive, it merely serves as an  indication of 
what can be done. 
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4. A Backlund transformation 

As an example of how the present formalism works for deriving Backlund transforma- 
tions we shall consider case (E)  from the previous section. With the explicit 1-forms 
given in (3.3) we find for the pseudopotentials 

dy = ( You + Z, b + XI ) dx + [ X3 - (af + be)X, - abX, + ( g  - a'b) Yo 

+ eY, + ay,+ ( h  - ab2)&+ fZ, + bZ2] dt. (4.1) 

The 2-forms F relevant for the system (3.4) are 

- d a d t + e d x d t  -dbdt - f  d x d t  -de d t + g  dx  d t  

- d f d t - h d x d t  -da d x - d g  dt+3abe dx  d t  (4.2) 
-db d x - d h  dt-3abf dx  dt. 

With the map 4 : (a, b, e,f, g, h, y )  + (a', 6, e',x g', L), the condition (1.8) for this to 
constitute a Backlund transformation becomes 

( 4 . 3 ~ )  

(4.3b) 

(4.3c) 

(4.3d) 

3ci,~be-3a'~ubf -a',x,+a'xn(af +be)+Gx,ab 

- iY,(g - a 2 b )  - i Y , e  - a',,a - i,(h -ab2)  - a',,f - a',b 

(4.3e) - - -j ,e+ghf - g ' e g + j ~ h - j v , a - g ' G b - ~ x l + 3 3 6 e '  

36,~be-36~abf  -6x,+6x,(af + be)+gX,ab 

-6,,(g-a2b)-6,1e-6Y2a - 6 ~ ( h - a b 2 ) - 6 z , f - 6 z 2 b  
..I 

= -h-,e+&f-Leg+h;h -6yoa-cGb-h-,,-3a'bf (4.3f . . . . . -  
= a', = = a'h = b, = b, = bg = bh = 0 

Here uGrr etc, denotes the directional derivative areGP, etc. Differentiating (4.3e) with 
respect to g and then with respect to e or f we obtain the expressions 

* 
gee = -am j e ,  = g'ff = -a 'hh.  

Substituting ( 4 . 3 ~ )  gives the result that a' has to be a linear function of a and b. 
Moreover we find that either the coefficient of a or that of b has to vanish. Hence we 
set 

a'= a ( y ) a  + k ( y )  

but then we get again from (4.3e) differentiated with respect to g that 

a,,= aq, = a x ,  =o.  
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As axo = a 
Without loss of generality (an analogous result holds for b )  we obtain 

- aG = 0, a=, = aGx, - ax,&, = 0, etc, we conclude that a is constant. 

a'= a + k ( y )  6 =  b + I ( y ) .  

Inserting this into (4.3) we obtain among other equations 

1 ,  = 0 1% = 1 = -1, lGxl = kl 

kG=O k,, = k = kx, k ,x ,  = kl 

k y n =  1,. 

It is now clear that the reduction to a three-dimensional algebra ( 2 . 7 )  does not 
yield a non-trivial solution, e.g. 

I,,, = alGxn = a ( l,,] + 1%) = a ( - I z ,  + I % )  = 0. 

Hence we have to use (2.8). The easiest case is to take v + p 2 = A 2 > 0  which gives 
O(2, 1) OO(2, 1) as the six-dimensional algebra. Using a one-dimensional non-linear 
representation for the O(2,  l) ,  we find the vectors with coordinates U and v 

(4.4) 

Without going into the detailed calculations we note that the remaining equations 
require p = 0 and that the Backlund transformation is given by 

2 d A  b=b- -  2 d A  a=a-- 
e' +e-' e' +e-'' 

Substituting the vectors (4.4) into (4.1) gives 

(4.5) 

1 1 -- J 2  ( a,, - a ' b  + ha, + A ' a )  e-" + - (b,, - ab2 - Ab, + A * b )  e' 
J2 

( 4 . 6 ~ )  

1 
A'-  ( a b ,  - ba,r) -  ab 

(4.6b) 

Equations ( 4 . 6 ~ )  and (4.6b) can be converted into Riccati equations for e" and e" 
respectively. Linear equations can be obtained by using linear representations for the 
algebras. 

1 1 1 
J2  42 - - ( a,, - a' b - Aa, + A ' a )  e' + - (b,, - ab2 + Ab, + A ' b )  e-' d t. 

Let us take as a simple seed solution 

a = - d u o  = constant b = 0 .  
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Then we obtain the new solutions 

U, cosh(Ax+A3t) - 1 
6 = - d  

cosh(Ax + A 3 1 )  + a, 

A Z  
cosh( Ax + A r )  + a,' 

6 = f i  

5. Concluding remarks 

We shall now briefly explain, how the formalism of Ablowitz er a1 [ 6 , 7 ,  12, 131 is 
related to the present one. They start with two linear equations (the notation of [7] 
has been changed) 

r, = U r  rr = Vr (5.1) 

for an n-dimensional vector r and n x n matrices U, V. Cross differentiation yields 

U,-  V , + [ U V ] = O .  ( 5 . 2 )  

For a 2 x 2 eigenvalue problem with constant eigenvalue A they consider 

or 

They then expand V in a truncated power series of A and A - '  and  derive non-linear 
equations for p and q from the compatibility condition ( 5 . 2 )  by setting the coefficients 
of the various powers of A to zero. The inverse scattering transform can then be applied. 

Matrix equations like (5.1) are reminiscent of (1.3) and (1.15) and arise naturally 
in the present context. In fact they can be constructed from the infinite algebra and 
the 0, Z system. A representation of our algebra in terms of infinite matrices whose 
elements are 2 x 2  matrices is easy to find (cf [ I ] )  

X ,  = ( k a t - , )  Y, = ( la : - , )  Z, = ( m a t - , )  --CO< a,  p <oo 
where the 2 x 2  matrices k, 1, m satisfy 

[ k , l ] = l  [ k ,  m 1 z - m  [ I ,  m ]  = k. 

This yields immediately a representation in terms of infinitely many two-component 
vectors r" 

(5.3) 

The ru are indeed the prolongation variables y from 0 1 .  
In the notation of 0 1 equation (1.15) is dy = XI['. There is no infinite sum over i, 

as for a given equation only a finite number of 5 d o  not vanish. For instance, case 
(F) of 0 3 gives 

X ,  = ( k r " - ' )  Y ,  = ( l r * - ' )  Z, = ( m r * - ' ) .  

dy  = XOt4+ Y0t5 + X , 5 ' +  ( Y ,  + Z2)t8+ Z , t 9  
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or, using x and  t as coordinates, 

d r"  = [ ( a k + l ) r " + m r " - l ]  d x  

+ {[(c -aa3)k  -f( b + ~ a ' ) l ] r "  + mr"-2 

+ [ a k +  1 ++( b - ; a ' ) m ] r " - ' }  dt. 

Assuming that r ( A )  = ZEI?x r"A " converges for some A ,  < A < A * ,  we can write 

dr(A) = ( a k  + 1 + A m ) r ( A )  d x  

+{ (c  - -$a3+ Aa)k+  [ A  -+( b+;a2) ]1  

+ A [ A  + $ ( b - i ~ ~ ) ] m } r ( A )  dt. (5 .4a )  

On the other hand, for y and t as coordinates we obtain 

dr(A) = [ k +  ( l / u ) l +  A / a  - m ] r ( A )  dy+{aAk+ [ A  - ( c / a  +ib ) ] l  

+ A [ A  - ( c / a  - f b ) ] m } r ( A )  dt. (5.4b) 

Both expressions (5.4) have the structure of a Lax pair. How one is connected to the 
other is by no means obvious unless one uses the SZ, Z system. 

The relation between the approach of Ablowitz et a1 and the present one can now 
be explained as follows: Ablowitz et a1 start with (1.3) (where (5.1) is the same equation 
written in matrix form) and assume that A and B can be expanded in a truncated 
power series of an eigenvalue parameter. Equation (1.5) then yields the 2-forms which 
when annulled give the desired equations. The approach via prolongation structures 
truncates the Cartan-Maurer forms of an  infinite-dimensional algebra and  reconstructs 
the equations from the closed ideal of the remaining forms, the Cl, Z system. 

If it were only for the linear equation (5.1) the two methods would be equivalent. 
However, the Estabrook- Wahlquist approach has some advantages. For instance, 
transformations of the type 'interchange of coordinate and  potential' are almost obvious 
and transformations of the Miura type are easily recognised (cf [2]); it is also easy to 
see that equations (3.8) stem from the same system. 

It should be noted that, if forms dual to generators with negative index are retained, 
the resulting equations are of the wave equation type. In the other case they are of 
the evolution equation type. 

It is clear that many more equations can be derived by the present method. With 
the recent interest in non-linear differential equations it appears useful to have methods 
for deriving equations which admit an infinite number of conserved quantities, Back- 
lund transformations are solvable by the inverse scattering method. Other infinite- 
dimensional algebras may, of course, also be taken as prolongation structures and  
more equations, some of them perhaps interesting or useful, can be constructed. 
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